Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
J Pediatr ; : 114060, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641166

ABSTRACT

OBJECTIVE: To evaluate genetic testing utilization and diagnostic yield in infants with esophageal atresia (EA)/tracheoesophageal fistula (TEF) over the past 12 years to inform future practices and individualize prognostication and management. STUDY DESIGN: A retrospective cohort study was performed for all infants with EA or EA/TEF hospitalized between January 2011 and January 2023 at a quaternary children's hospital. For each infant, demographic information, prenatal and postnatal history, and genetic testing were reviewed. RESULTS: There were 212 infants who were classified as 1) complex/syndromic with EA/TEF plus an additional major anatomic anomaly (N=114, of which 74 met VACTERL criteria); 2) isolated/non syndromic EA/TEF (N=88) and 3) isolated/nonsyndromic EA (N=10). A range of genetic tests were sent with varying diagnostic rates including karyotype analysis in 12 (all with complex/syndromic phenotypes and all positive), chromosomal microarray analysis in 189 (114 of whom were complex/syndromic with an overall diagnostic rate of 3/189), single gene testing for CHD7 in 18 (4 positive), and exome analysis in 37 complex/syndromic patients (8 positive). CONCLUSION: (s): EA/TEF with and without additional anomalies is genetically heterogeneous with a broad range of associated phenotypes. While the genetic etiology of EA/TEF with or without VACTERL remains largely unknown, genome wide testing (exome or genome) including copy number analysis is recommended over chromosomal microarray testing. We anticipate that expanded genetic/genomic testing modalities such as RNA sequencing and tissue specific molecular testing are needed in this cohort to improve our understanding of the genetic contributors to EA/TEF.

2.
Am J Med Genet A ; 194(5): e63530, 2024 May.
Article in English | MEDLINE | ID: mdl-38197511

ABSTRACT

MPZL2-related hearing loss is a rare form of autosomal recessive hearing loss characterized by progressive, mild sloping to severe sensorineural hearing loss. Thirty-five previously reported patients had biallelic truncating variants in MPZL2, with the exception of one patient with a missense variant of uncertain significance and a truncating variant. Here, we describe the clinical characteristics and genotypes of five patients from four families with confirmed MPZL2-related hearing loss. A rare missense likely pathogenic variant [NM_005797.4(MPZL2):c.280C>T,p.(Arg94Trp)] located in exon 3 was confirmed to be in trans with a recurrent pathogenic truncating variant that segregated with hearing loss in three of the patients from two unrelated families. This is the first recurrent likely pathogenic missense variant identified in MPZL2. Apparently milder or later-onset hearing loss associated with rare missense variants in MPZL2 indicates that some missense variants in this gene may cause a milder phenotype than that resulting from homozygous or compound heterozygous truncating variants. This study, along with the identification of truncating loss of function and missense MPZL2 variants in several diverse populations, suggests that MPZL2-related hearing loss may be more common than previously appreciated and demonstrates the need for MPZL2 inclusion in hearing loss testing panels.


Subject(s)
Cell Adhesion Molecules , Hearing Loss, Sensorineural , Humans , Cell Adhesion Molecules/genetics , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Mutation, Missense/genetics , Pedigree , Phenotype
3.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961560

ABSTRACT

The interchromatin space in the cell nucleus contains various membrane-less nuclear bodies. Recent findings indicate that nuclear speckles, comprising a distinct nuclear body, exhibit interactions with certain chromatin regions in a ground state. Key questions are how this ground state of chromatin-nuclear speckle association is established and what are the gene regulatory roles of this layer of nuclear organization. We report here that chromatin structural factors CTCF and cohesin are required for full ground state association between DNA and nuclear speckles. Disruption of ground state DNA-speckle contacts via either CTCF depletion or cohesin depletion had minor effects on basal level expression of speckle-associated genes, however we show strong negative effects on stimulus-dependent induction of speckle-associated genes. We identified a putative speckle targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin-nuclear speckle association. In contrast to reduction of CTCF or RAD21, depletion of the cohesin releasing factor WAPL stabilized cohesin on chromatin and DNA-speckle contacts, resulting in enhanced inducibility of speckle-associated genes. In addition, we observed disruption of chromatin-nuclear speckle association in patient derived cells with Cornelia de Lange syndrome (CdLS), a congenital neurodevelopmental diagnosis involving defective cohesin pathways, thus revealing nuclear speckles as an avenue for therapeutic inquiry. In summary, our findings reveal a mechanism to establish the ground organizational state of chromatin-speckle association, to promote gene inducibility, and with relevance to human disease.

4.
J Pediatr ; 262: 113620, 2023 11.
Article in English | MEDLINE | ID: mdl-37473993

ABSTRACT

OBJECTIVE: To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN: This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS: The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION: CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Premature Birth , Female , Humans , Child , Infant, Newborn , Retrospective Studies , Premature Birth/genetics , Hearing Loss/diagnosis , Hearing Loss/genetics , Deafness/genetics , Phenotype , Hearing Loss, Sensorineural/diagnosis , Genetic Testing/methods
5.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-37154160

ABSTRACT

Central conducting lymphatic anomaly (CCLA) due to congenital maldevelopment of the lymphatics can result in debilitating and life-threatening disease with limited treatment options. We identified 4 individuals with CCLA, lymphedema, and microcystic lymphatic malformation due to pathogenic, mosaic variants in KRAS. To determine the functional impact of these variants and identify a targeted therapy for these individuals, we used primary human dermal lymphatic endothelial cells (HDLECs) and zebrafish larvae to model the lymphatic dysplasia. Expression of the p.Gly12Asp and p.Gly13Asp variants in HDLECs in a 2­dimensional (2D) model and 3D organoid model led to increased ERK phosphorylation, demonstrating these variants activate the RAS/MAPK pathway. Expression of activating KRAS variants in the venous and lymphatic endothelium in zebrafish resulted in lymphatic dysplasia and edema similar to the individuals in the study. Treatment with MEK inhibition significantly reduced the phenotypes in both the organoid and the zebrafish model systems. In conclusion, we present the molecular characterization of the observed lymphatic anomalies due to pathogenic, somatic, activating KRAS variants in humans. Our preclinical studies suggest that MEK inhibition should be studied in future clinical trials for CCLA due to activating KRAS pathogenic variants.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Zebrafish , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Endothelial Cells/metabolism , Phosphorylation , Mitogen-Activated Protein Kinase Kinases/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Am J Med Genet A ; 191(8): 2149-2155, 2023 08.
Article in English | MEDLINE | ID: mdl-37212523

ABSTRACT

SRRM2-related neurodevelopmental disorder is a recently described genetic diagnosis caused by loss-of-function variants in SRRM2. In order to understand the clinical spectrum of SRRM2-related neurodevelopmental disorder, we performed a retrospective exome data and clinical chart review at a single tertiary children's hospital, Children's Hospital of Philadelphia (CHOP). Among approximately 3100 clinical exome sequencing cases performed at CHOP, we identified three patients with SRRM2 loss-of-function pathogenic variants, in addition to one patient previously described in the literature. Common clinical features include developmental delay, attention deficit hyperactivity disorder, macrocephaly, hypotonia, gastroesophageal reflux, overweight/obesity, and autism. While developmental disabilities are commonly seen in all individuals with SRRM2 variants, the degree of developmental delay and intellectual disability is variable. Our data suggest that SRRM2-related neurodevelopmental disorder can be identified in 0.3% of individuals with developmental disabilities receiving exome sequencing.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Child , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Retrospective Studies , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Hospitals , RNA-Binding Proteins
7.
J Neuroophthalmol ; 43(1): 110-115, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35921603

ABSTRACT

BACKGROUND: To describe the clinical presentation with a focus on ocular manifestations and response to riboflavin supplementation of 3 patients with riboflavin transporter deficiency (RTD) caused by mutations in SLC52A2 ( SLC52A2- RTD). METHODS: This is a retrospective review of records of 3 children (aged 18, n = 2 and age = 8, n = 1) with SLC52A2- RTD. Patients underwent comprehensive ophthalmic evaluations including color vision testing, pattern visual-evoked potentials (pVEPs, 1 patient) and spectral domain optical coherence tomography (SD-OCT) imaging. Patients received riboflavin supplements from the time of the molecular diagnosis of RTD. RESULTS: Two unrelated 18-year-old patients with SLC52A2- RTD had a symptomatic onset with sensorineural hearing loss and auditory neuropathy/dys-synchrony since age 3 and 11, respectively. On examination 7 years after symptomatic onset, they showed subnormal visual acuities (20/30 and 20/60, both eyes, respectively), preserved color vision, and a thin but measurable retinal ganglion cell layer (GCL) and nerve fiber (RNFL). The inner and outer nuclear layers were normal. The asymptomatic SLC52A2- positive brother of one of these patients started riboflavin supplementation right after the molecular diagnosis and had normal vision and SD-OCTs 7 years later. Onset of riboflavin supplementation in one of the 2 symptomatic cases resulted in acute improvement of the pattern visual-evoked potential and vision. CONCLUSIONS: Retinal ganglion cells and their axons are uniquely susceptible to RTD compared with other highly energy-dependent retinal neurons, such as photoreceptors, raising the possibility for alternative mechanisms of disease or protection. Riboflavin supplementation results in acute functional improvement of vision and long-term preservation of GCL and RNFL if initiated early.


Subject(s)
Tomography, Optical Coherence , Vision Tests , Male , Child , Humans , Adolescent , Tomography, Optical Coherence/methods , Riboflavin/therapeutic use , Biomarkers
9.
JAMA Ophthalmol ; 140(9): 889-893, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35951321

ABSTRACT

Importance: Familial exudative vitreoretinopathy (FEVR) is a nonsyndromic autosomal dominant retinal disorder commonly caused by variants in the FZD4 gene. This study investigates the potential role beyond ocular abnormalities for FZD4 gene variants in patients with FEVR. Objective: To evaluate the role of FZD4 in symptoms beyond those associated with FEVR through a patient with biallelic variants in FZD4. Design, Setting, and Participants: This case series included the DNA testing and phenotyping of 1 patient proband and her parents, combined with signaling assays, to determine the association of patient-derived compound heterozygous variants on FZD4 signaling and biologic function. Main Outcomes and Measures: FZD4 genes were tested using next-generation sequencing and Sanger sequencing. Cell-based assays measured the effect of the variants on FZD4 signaling. Results: The proband presented with absent red reflexes from complete tractional retinal detachments diagnosed at 3 days of age and failed the newborn screening hearing test. Auditory brainstem response at 6 months of age showed bilateral mild to moderate high-frequency sensorineural hearing loss. The patient manifested developmental delays in speech and walking. Intravenous fluorescein angiography (IVFA) of the patient's parents detected stage 1 FEVR. Genetic testing revealed 2 FZD4 variants in the patient, each variant found in 1 parent. Signaling assays confirmed that the presence of both variants was associated with significantly worse signaling activity compared with the heterozygous state. Conclusions and Relevance: Results of this case series suggest that extraocular syndromic FEVR was associated with FZD4 variants. The decrease in FZD4 signaling owing to the biallelic nature of the disease resulted in hearing deficits, developmental delays, and a more severe retinal phenotype.


Subject(s)
Biological Products , Eye Diseases, Hereditary , Hearing Loss, Sensorineural , Retinal Diseases , DNA/genetics , DNA Mutational Analysis , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Familial Exudative Vitreoretinopathies , Female , Frizzled Receptors/genetics , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Mutation , Pedigree , Retinal Diseases/diagnosis
10.
Hum Mutat ; 43(12): 1837-1843, 2022 12.
Article in English | MEDLINE | ID: mdl-35870179

ABSTRACT

Synonymous variants have been shown to alter the correct splicing of pre-mRNAs and generate disease-causing transcripts. These variants are not an uncommon etiology of genetic disease; however, they are frequently overlooked during genetic testing in the absence of functional and clinical data. Here, we describe the occurrence of a synonymous variant [NM_005422.4 (TECTA):c.327C>T, p.(Gly109=)] in seven individuals with hearing loss from six unrelated families. The variant is not located near exonic/intronic boundaries but is predicted to impact splicing by activating a cryptic splicing donor site in exon 4 of TECTA. In vitro minigene assays show that the variant disrupts the reading frame of the canonical transcript, which is predicted to cause a premature termination codon 48 amino acids downstream of the variant, leading to nonsense-mediated decay. The variant is present in population databases, predominantly in Latinos of African ancestry, but is rare in other ethnic groups. Our findings suggest that this synonymous variant is likely pathogenic for TECTA-associated autosomal recessive hearing loss and seems to have arisen as a founder variant in this specific Latino subpopulation. This study demonstrates that synonymous variants need careful splicing assessment and support from additional testing methodologies to determine their clinical impact.


Subject(s)
Deafness , Hearing Loss , Humans , RNA Splice Sites , RNA Splicing/genetics , Hearing Loss/genetics , Deafness/genetics , Exons/genetics , Extracellular Matrix Proteins/genetics , GPI-Linked Proteins/genetics
11.
Pediatrics ; 150(1)2022 07 01.
Article in English | MEDLINE | ID: mdl-35642503

ABSTRACT

BACKGROUND AND OBJECTIVES: Telemedicine may increase access to medical genetics care. However, in the pediatric setting, how telemedicine may affect the diagnostic rate is unknown, partially because of the perceived importance of the dysmorphology physical examination. We studied the clinical effectiveness of telemedicine for patients with suspected or confirmed genetic conditions. METHODS: We conducted a retrospective cohort study of outpatient encounters before and after the widespread implementation of telemedicine (N = 5854). Visit types, diagnoses, patient demographic characteristics, and laboratory data were acquired from the electronic health record. Patient satisfaction was assessed through survey responses. New molecular diagnosis was the primary end point. RESULTS: Patients seen by telemedicine were more likely to report non-Hispanic White ancestry, prefer to speak English, live in zip codes with higher median incomes, and have commercial insurance (all P < .01). Genetic testing was recommended for more patients evaluated by telemedicine than in person (79.5% vs 70.9%; P < .001). Patients seen in person were more likely to have a sample collected, resulting in similar test completion rates (telemedicine, 51.2%; in person, 55.1%; P = .09). There was no significant difference in molecular diagnosis rate between visit modalities (telemedicine, 13.8%; in person, 12.4%; P = .40). CONCLUSIONS: Telemedicine and traditional in-person evaluation resulted in similar molecular diagnosis rates. However, improved methodologies for remote sample collection may be required. This study reveals the feasibility of telemedicine in a large academic medical genetics practice and is applicable to other pediatric specialties with perceived importance of physical examination.


Subject(s)
Telemedicine , Child , Humans , Patient Satisfaction , Retrospective Studies , Surveys and Questionnaires , Telemedicine/methods , Treatment Outcome
12.
Genet Med ; 24(8): 1774-1780, 2022 08.
Article in English | MEDLINE | ID: mdl-35567594

ABSTRACT

PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , RNA-Binding Proteins/genetics , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Phenotype
13.
J Pediatr ; 248: 108-113.e2, 2022 09.
Article in English | MEDLINE | ID: mdl-35430246

ABSTRACT

OBJECTIVE: To evaluate genetic testing use in infants with congenital diaphragmatic hernia (CDH) over the past decade to better inform future practices and individualize prognostication and management. STUDY DESIGN: A retrospective cohort study was performed of all infants with CDH enrolled in the Pulmonary Hypoplasia Program at Children's Hospital of Philadelphia, born between January 2011 and February 2021. For each infant, demographic information, prenatal and postnatal history, and genetic testing were reviewed. RESULTS: The charts of 411 infants were analyzed. Overall, 22% (n = 89) were complex/syndromic and 78% (n = 322) were isolated/nonsyndromic. Mortality was significantly higher in complex/syndromic infants (P < .001) and in infants with diagnostic genetic testing (P < .001). Microarray was diagnostic in 9% (n = 34/399) and exome sequencing was diagnostic in 38% (n = 15/39). Genetic testing was diagnostic in 57% (n = 51/89) of complex/syndromic infants, but in only 2% of isolated/nonsyndromic infants (n = 8/322). Overall, genetic testing was diagnostic in 14% (n = 56). CONCLUSIONS: The high diagnostic rate in this cohort highlights the utility of comprehensive genetic testing in infants with CDH. However, 43% of complex/syndromic and 98% of isolated/nonsyndromic infants do not have a genetic etiology identified. This finding underscores the need for additional genetic and genomic studies (eg, whole genome, RNA sequencing) to identify novel genes and mutational mechanisms (single genes, regulatory elements, complex traits) that will allow for improved diagnostic rates and ultimately individualized management of infants with CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Child , Cohort Studies , Female , Genomics , Hernias, Diaphragmatic, Congenital/diagnosis , Hernias, Diaphragmatic, Congenital/genetics , Humans , Infant , Philadelphia , Pregnancy , Retrospective Studies
16.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Article in English | MEDLINE | ID: mdl-35065284

ABSTRACT

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Subject(s)
Exome , Pathology, Molecular , Child , Exome/genetics , Humans , Mutation , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing/methods
19.
Am J Med Genet A ; 188(3): 1005-1014, 2022 03.
Article in English | MEDLINE | ID: mdl-34877788

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a spectrum disorder due to variants in genes of the cohesin protein complex. The following abstracts are from the Cornelia de Lange Syndrome Scientific and Educational Symposium held virtually in October 2020. Aspects of behavior, including autistic features, impulsivity, adaptive skills, executive function, and anxiety are described. Applied behavioral analysis is a promising approach for autism, and an N-acetylcysteine trial is proposed. Children below 6 years with CdLS have an increased number of and further travel to medical providers, with insurance type comprising a significant barrier. Speech, language, and feeding abilities fall significantly below expectations for age in CdLS. Augmentative alternative communication can yield potential barriers as well as interesting benefits. Developmentally, studies in animal models further elucidate the mechanisms and roles of cohesin: link with mediator transcriptional complex; facilitation of enhancer-promoter communication; regulation of gene expression; allocation of cells to germ layers; and repair of spontaneous DNA damage in placental cells. Genome and RNA sequencing can help identify the molecular cause in the 20% of individuals with suspected CdLS and negative testing. The phenotypes in individuals with variants in the SMC1A gene are distinct, and that with intractable seizures has been further evaluated. AMA CME credits provided by GBMC, Baltimore, MD. All studies approved by an ethics committee.

20.
Hum Mol Genet ; 31(10): 1599-1609, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34849865

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , De Lange Syndrome , Intellectual Disability , Tooth Abnormalities , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , De Lange Syndrome/genetics , Down-Regulation/genetics , Facies , Humans , Mutation , Phenotype , Proto-Oncogene Proteins c-myc
SELECTION OF CITATIONS
SEARCH DETAIL
...